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Choosing k

George Chen



A Sketch of How to Interpret Clusters

Demo



Gaussian Mixture Model (GMM)

GMM: assume these points generated in a particular way



Gaussian Mixture Model (GMM)

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

how probable 
point generated 

at (x, y) is

y
x

Red = more likely

Blue = less likely

This is the sum of two 2D 
Gaussian distributions!



Quick Reminder: 1D Gaussian

Image source: https://matthew-brett.github.io/teaching//smoothing_intro-3.hires.png

This is a 1D Gaussian distribution



2D Gaussian

Image source: https://i.stack.imgur.com/OIWce.png

This is a 2D Gaussian distribution



Gaussian Mixture Model (GMM)

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

how probable 
point generated 

at (x, y) is

y
x

Red = more likely

Blue = less likely

This is the sum of two 2D 
Gaussian distributions!

2D Gaussian distribution
2D Gaussian distribution

Key idea: Each Gaussian 
corresponds to a different cluster



Example: 1D GMM with 2 Clusters

What do you think the probability distribution looks like?

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 0.5

Probability of generating a 
point from cluster 2 = 0.5

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1



Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 0.5

Probability of generating a 
point from cluster 2 = 0.5

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1



Example: 1D GMM with 2 Clusters

What do you think the probability distribution looks like?

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 0.7

Probability of generating a 
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1



Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 0.7

Probability of generating a 
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1



Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 0.7

Probability of generating a 
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

How to generate 1D points from this GMM:
1. Flip biased coin (with probability of heads 0.7)
2. If heads: sample 1 point from Gaussian mean -5, std dev 1
    If tails: sample 1 point from Gaussian mean 5, std dev 1



Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster 2 = 𝜋2

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇2

Gaussian std dev = 𝜎2

How to generate 1D points from this GMM:
1. Flip biased coin (with probability of heads 𝜋1)
2. If heads: sample 1 point from Gaussian mean 𝜇1, std dev 𝜎1

    If tails: sample 1 point from Gaussian mean 𝜇2, std dev 𝜎2



Example: 1D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇k

Gaussian std dev = 𝜎k

How to generate 1D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, std dev 𝜎Z

…



Example: 2D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian covariance = 𝛴1

Gaussian mean = 𝜇k

Gaussian covariance = 𝛴k

How to generate 2D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

…
2D point 2D point

2x2 matrix 2x2 matrix



2D Gaussian Shape
In 1D, you can have a skinny Gaussian or a wide Gaussian

In 2D, you can more generally have ellipse-shaped Gaussians

Less uncertainty More uncertainty

Image source: https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels2013/
homework/assign5/a52dgauss.jpg

Top-down view of an example 2D Gaussian distribution

Ellipse enables 
encoding relationship 

between variables

Can't have arbitrary 
shapes



GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian covariance = 𝛴1

Gaussian mean = 𝜇k

Gaussian covariance = 𝛴k

How to generate points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

…
in ℝd in ℝd

d x d matrix d x d matrix



High-Level Idea of GMM
• Generative model that gives a hypothesized way in which data 

points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!



–George Edward Pelham Box

“All models are wrong, but some are useful.” 

Photo: “George Edward Pelham Box, Professor Emeritus of Statistics, University of 
Wisconsin-Madison” by DavidMCEddy is licensed under CC BY-SA 3.0



High-Level Idea of GMM
• Generative model that gives a hypothesized way in which data 

points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

• Learning ("fitting") the parameters of a GMM
• Input: d-dimensional data points, your guess for k
• Output: 𝜋1, …, 𝜋k, 𝜇1, …, 𝜇k, 𝛴1, …, 𝛴k

• After learning a GMM:
• For any d-dimensional data point, can figure out probability 

of it belonging to each of the clusters
How do you turn this into a cluster assignment?



k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for 
where cluster centers are

Example: choose k of 
the points uniformly 

at random to be initial 
guesses for cluster 

centers
(There are many 

ways to make the 
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence: 



k-means
Step 0: Pick k

Step 1: Pick guesses for 
where cluster centers are

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence: 



(Rough Intuition) Learning a GMM
Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Step 2: Assign each point a probability to belonging to each of the 
k clusters

Step 3: Update cluster means and covariances carefully 
accounting for probabilities of each point belonging to each of the 
clusters

Repeat until convergence: 

This algorithm is called the Expectation-Maximization (EM) algorithm 
specifically for GMM's (and approximately does maximum likelihood)

(Note: EM by itself is a general algorithm not just for GMM's)



Relating k-means to GMM's

k-means approximates the EM algorithm for GMM’s:

• k-means does "hard" assignment of each point to a cluster, 
whereas EM does a "soft" (probabilistic) assignment

Interpretation: We know when k-means should work! It should 
work when the data appear as if they're from a GMM with true 
clusters that "look like circles"

• k-means does not keep track of shape/correlation 
information between variables (so shape is circular)



k-means should do well on this



But not on this



Automatically Choosing k

For k = 2, 3, … up to some user-specified max value:

Fit model using k

Compute a score for the model

Use whichever k has the best score

There are fancier ways for choosing k (e.g., DP-GMMs)

No single way of choosing k is the “best” way

But what score function should we use?



Here’s an example of a score 
function you don’t want to use

But hey it’s worth a shot



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:  
sum of squared purple lengths

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:

Measure distance 
from each point to 
its cluster center

RSS1 =
∑

x∈cluster 1

∥x − µ1∥2



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Repeat similar calculation 
for other cluster

Residual sum of squares for cluster 2:

Measure distance 
from each point to 
its cluster center

RSS2 =
∑

x∈cluster 2

∥x − µ2∥2



Repeat similar calculation 
for other cluster

Measure distance 
from each point to 
its cluster center

Residual Sum of Squares

Cluster 1

Cluster 2

In general if there are k clusters:

Remark: k-means tries to minimize RSS  
(it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles

RSS = RSS1 + RSS2 =
∑

x∈cluster 1

∥x − µ1∥2 +
∑

x∈cluster 2

∥x − µ2∥2

RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2



Why is minimizing RSS a bad 
way to choose k?

What happens when k is equal to the number of data points?



A Good Way to Choose k

Want to also measure between-cluster variation

RSS measures within-cluster variation

W = RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

B =
k∑

g=1

(# points in cluster g)∥µg − µ∥2

mean of all points
A good score function to use for choosing k:

Pick k with highest CH(k)

n = total # points
(Choose k among 2, 3, … up to 
pre-specified max)

Called the CH index 
[Calinski and Harabasz 1974]

CH(k ) =
B · (n − k )
W · (k − 1)



Automatically Choosing k

Demo


