Carnegie Mellon University Heinzcollege

#### 94-775 Lecture 7: Interpreting Clusters, Gaussian Mixture Models, Automatically Choosing *k*

George Chen

#### A Sketch of How to Interpret Clusters

Demo

### Gaussian Mixture Model (GMM)

GMM: assume these points generated in a particular way

### Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution



Example of a 2D probability distribution

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

### Quick Reminder: 1D Gaussian



Image source: https://matthew-brett.github.io/teaching//smoothing\_intro-3.hires.png

#### 2D Gaussian



#### This is a 2D Gaussian distribution

Image source: https://i.stack.imgur.com/OIWce.png

### Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution



Example of a 2D probability distribution

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

#### Cluster 1

#### Cluster 2

Probability of generating a point from cluster 1 = 0.5

Gaussian mean = -5

Gaussian std dev = 1

Probability of generating a point from cluster 2 = 0.5

Gaussian mean = 5

Gaussian std dev = 1

What do you think the probability distribution looks like?

#### Cluster 1

Probability of generating a point from cluster 1 = 0.5

Gaussian mean = -5

Gaussian std dev = 1

#### Cluster 2

Probability of generating a point from cluster 2 = 0.5Gaussian mean = 5

Gaussian std dev = 1



#### Cluster 1

#### Cluster 2

Probability of generating a point from cluster 1 = 0.7

- Gaussian mean = -5
- Gaussian std dev = 1

Probability of generating a point from cluster 2 = **0.3** 

Gaussian mean = 5

Gaussian std dev = 1

What do you think the probability distribution looks like?

#### Cluster 1

Probability of generating a point from cluster 1 = 0.7

Gaussian mean = -5

Gaussian std dev = 1

#### <u>Cluster 2</u>

Probability of generating a point from cluster 2 = 0.3Gaussian mean = 5

Gaussian std dev = 1



#### Cluster 1

#### <u>Cluster 2</u>

Probability of generating a point from cluster 1 = 0.7

Gaussian mean = -5

Gaussian std dev = 1

Probability of generating a point from cluster 2 = 0.3

Gaussian mean = 5

Gaussian std dev = 1

How to generate 1D points from this GMM:

- 1. Flip biased coin (with probability of heads 0.7)
- 2. If heads: sample 1 point from Gaussian mean -5, std dev 1 If tails: sample 1 point from Gaussian mean 5, std dev 1

#### Cluster 1

#### Cluster 2

Probability of generating a point from cluster  $1 = \pi_1$ 

Gaussian mean =  $\mu_1$ 

Gaussian std dev =  $\sigma_1$ 

Probability of generating a point from cluster  $2 = \pi_2$ 

Gaussian mean =  $\mu_2$ 

Gaussian std dev =  $\sigma_2$ 

How to generate 1D points from this GMM:

- 1. Flip biased coin (with probability of heads  $\pi_1$ )
- 2. If heads: sample 1 point from Gaussian mean  $\mu_1$ , std dev  $\sigma_1$ If tails: sample 1 point from Gaussian mean  $\mu_2$ , std dev  $\sigma_2$

#### Cluster 1

| Probability of generating a    |
|--------------------------------|
| point from cluster $1 = \pi_1$ |

Gaussian mean =  $\mu_1$ 

Gaussian std dev =  $\sigma_1$ 

#### Cluster k

Probability of generating a point from cluster  $k = \pi_k$ Gaussian mean =  $\mu_k$ 

Gaussian std dev =  $\sigma_k$ 

How to generate 1D points from this GMM:

- 1. Flip biased k-sided coin (the sides have probabilities  $\pi_1, \ldots, \pi_k$ )
- 2. Let Z be the side that we got (it is some value 1, ..., k)
- 3. Sample 1 point from Gaussian mean  $\mu_Z$ , std dev  $\sigma_Z$

#### Cluster 1

#### <u>Cluster k</u>

- Probability of generating a point from cluster  $1 = \pi_1$ Gaussian mean  $= \mu_1$  2D point Gaussian **covariance**  $= \Sigma_1$ How to generate **2D** points from this GMM: **1** Flip biased k sided asin (the sides have probabilities  $= -\pi_1$ )
  - 1. Flip biased k-sided coin (the sides have probabilities  $\pi_1, \ldots, \pi_k$ )
  - 2. Let Z be the side that we got (it is some value 1, ..., k)
  - 3. Sample 1 point from Gaussian mean  $\mu_Z$ , **covariance**  $\Sigma_Z$

### **2D Gaussian Shape**

In 1D, you can have a skinny Gaussian or a wide Gaussian

Less uncertainty

More uncertainty

In 2D, you can more generally have ellipse-shaped Gaussians

Ellipse enables encoding relationship between variables



Can't have arbitrary shapes

Top-down view of an example 2D Gaussian distribution

Image source: https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels2013/ homework/assign5/a52dgauss.jpg

### GMM with k Clusters

#### Cluster 1

#### <u>Cluster k</u>

- Probability of generating a<br/>point from cluster  $1 = \pi_1$ Probability of generating a<br/>point from cluster  $k = \pi_k$ Gaussian mean  $= \mu_1$ in  $\mathbb{R}^d$ Gaussian mean  $= \mu_k$ in  $\mathbb{R}^d$ Gaussian covariance  $= \Sigma_1$ Gaussian covariance  $= \Sigma_k$ <br/> $d \times d$  matrixd  $\times d$  matrix<br/> $d \times d$  matrixd  $\times d$  matrix<br/> $d \times d$  matrix1. Flip biased k-sided coin (the sides have probabilities  $\pi_1, ..., \pi_k$ )
  - 2. Let Z be the side that we got (it is some value 1, ..., k)
  - 3. Sample 1 point from Gaussian mean  $\mu_Z$ , covariance  $\Sigma_Z$

### High-Level Idea of GMM

• Generative model that gives a *hypothesized* way in which data points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!



#### "All models are wrong, but some are useful."

-George Edward Pelham Box

Photo: "George Edward Pelham Box, Professor Emeritus of Statistics, University of Wisconsin-Madison" by DavidMCEddy is licensed under CC BY-SA 3.0

### High-Level Idea of GMM

Generative model that gives a *hypothesized* way in which data points are generated

In reality, data are unlikely generated the same way! In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM
  - Input: *d*-dimensional data points, your guess for *k*
  - Output:  $\pi_1, ..., \pi_k, \mu_1, ..., \mu_k, \Sigma_1, ..., \Sigma_k$
- After learning a GMM:
  - For any *d*-dimensional data point, can figure out probability of it belonging to each of the clusters

How do you turn this into a cluster assignment?

#### Repeat until convergence:

Step 0: Pick k

We'll pick k = 2

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers (There are many ways to make the initial guesses)

Step 1: Pick guesses for

where cluster centers are

Step 2: Assign each point to belong to the closest cluster

k-means

Step 3: Update cluster means (to be the center of mass per cluster)

#### k-means

Step 0: Pick k

Step 1: Pick <u>guesses</u> for where cluster centers are

#### Repeat until convergence:

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

## (Rough Intuition) Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

#### Repeat until convergence:

Step 2: Assign each point a probability to belonging to each of the *k* clusters

Step 3: Update **cluster means and covariances** carefully accounting for probabilities of each point belonging to each of the clusters

This algorithm is called the Expectation-Maximization (EM) algorithm specifically for GMM's (and approximately does maximum likelihood) (Note: EM by itself is a general algorithm not just for GMM's)

### Relating k-means to GMM's

*k*-means approximates the EM algorithm for GMM's:

- k-means does "hard" assignment of each point to a cluster, whereas EM does a "soft" (probabilistic) assignment
- *k*-means does not keep track of shape/correlation information between variables (so shape is circular)

Interpretation: We know when k-means should work! It should work when the data appear as if they're from a GMM with true clusters that "look like circles"

#### k-means should do well on this



#### But not on this



### Automatically Choosing k

For k = 2, 3, ... up to some user-specified max value:

Fit model using *k* 

Compute a score for the model But what score function should we use?

Use whichever *k* has the best score

There are fancier ways for choosing k (e.g., DP-GMMs) No single way of choosing k is the "best" way

## Here's an example of a score function you don't want to use

But hey it's worth a shot































$$RSS = RSS_1 + RSS_2 = \sum_{x \in cluster 1} ||x - \mu_1||^2 + \sum_{x \in cluster 2} ||x - \mu_2||^2$$
  
In general if there are *k* clusters:  
$$RSS = \sum_{g=1}^{k} RSS_g = \sum_{g=1}^{k} \sum_{x \in cluster g} ||x - \mu_g||^2$$

Davidual Cum of Causeroe

Remark: *k*-means *tries* to minimize RSS (it does so *approximately*, with no guarantee of optimality) Cluster 1 RSS only really makes sense for clusters that look like circles

# Why is minimizing RSS a bad way to choose *k*?

What happens when k is equal to the number of data points?

### A Good Way to Choose k

RSS measures within-cluster variation

$$W = \text{RSS} = \sum_{g=1}^{k} \text{RSS}_g = \sum_{g=1}^{k} \sum_{x \in \text{cluster } g} ||x - \mu_g||^2$$

Want to also measure between-cluster variation

$$B = \sum_{g=1}^{k} (\text{\# points in cluster } g) \|\mu_g - \mu\|^2$$
  
Called the **CH index**  
[Calinski and Harabasz 1974]  
A good score function to use for choosing k:  
$$CH(k) = \frac{B \cdot (n-k)}{W \cdot (k-1)}$$
Pick k with highest CH(k)  
$$R = \text{total \# points}$$
Pick k among 2, 3, ... up to  
pre-specified max)

### Automatically Choosing k

Demo