Carnegie Mellon University Heinzcollege

94-775 Lecture 7: Interpreting Clusters, Gaussian Mixture Models, Automatically Choosing *k*

George Chen

A Sketch of How to Interpret Clusters

Demo

Gaussian Mixture Model (GMM)

GMM: assume these points generated in a particular way

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Quick Reminder: 1D Gaussian

Image source: https://matthew-brett.github.io/teaching//smoothing_intro-3.hires.png

2D Gaussian

This is a 2D Gaussian distribution

Image source: https://i.stack.imgur.com/OIWce.png

Gaussian Mixture Model (GMM)

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Cluster 1

Cluster 2

Probability of generating a point from cluster 1 = 0.5

Gaussian mean = -5

Gaussian std dev = 1

Probability of generating a point from cluster 2 = 0.5

Gaussian mean = 5

Gaussian std dev = 1

What do you think the probability distribution looks like?

Cluster 1

Probability of generating a point from cluster 1 = 0.5

Gaussian mean = -5

Gaussian std dev = 1

Cluster 2

Probability of generating a point from cluster 2 = 0.5Gaussian mean = 5

Gaussian std dev = 1

Cluster 1

Cluster 2

Probability of generating a point from cluster 1 = 0.7

- Gaussian mean = -5
- Gaussian std dev = 1

Probability of generating a point from cluster 2 = **0.3**

Gaussian mean = 5

Gaussian std dev = 1

What do you think the probability distribution looks like?

Cluster 1

Probability of generating a point from cluster 1 = 0.7

Gaussian mean = -5

Gaussian std dev = 1

<u>Cluster 2</u>

Probability of generating a point from cluster 2 = 0.3Gaussian mean = 5

Gaussian std dev = 1

Cluster 1

<u>Cluster 2</u>

Probability of generating a point from cluster 1 = 0.7

Gaussian mean = -5

Gaussian std dev = 1

Probability of generating a point from cluster 2 = 0.3

Gaussian mean = 5

Gaussian std dev = 1

How to generate 1D points from this GMM:

- 1. Flip biased coin (with probability of heads 0.7)
- 2. If heads: sample 1 point from Gaussian mean -5, std dev 1 If tails: sample 1 point from Gaussian mean 5, std dev 1

Cluster 1

Cluster 2

Probability of generating a point from cluster $1 = \pi_1$

Gaussian mean = μ_1

Gaussian std dev = σ_1

Probability of generating a point from cluster $2 = \pi_2$

Gaussian mean = μ_2

Gaussian std dev = σ_2

How to generate 1D points from this GMM:

- 1. Flip biased coin (with probability of heads π_1)
- 2. If heads: sample 1 point from Gaussian mean μ_1 , std dev σ_1 If tails: sample 1 point from Gaussian mean μ_2 , std dev σ_2

Cluster 1

Probability of generating a
point from cluster $1 = \pi_1$

Gaussian mean = μ_1

Gaussian std dev = σ_1

Cluster k

Probability of generating a point from cluster $k = \pi_k$ Gaussian mean = μ_k

Gaussian std dev = σ_k

How to generate 1D points from this GMM:

- 1. Flip biased k-sided coin (the sides have probabilities π_1, \ldots, π_k)
- 2. Let Z be the side that we got (it is some value 1, ..., k)
- 3. Sample 1 point from Gaussian mean μ_Z , std dev σ_Z

Cluster 1

<u>Cluster k</u>

- Probability of generating a point from cluster $1 = \pi_1$ Gaussian mean $= \mu_1$ 2D point Gaussian **covariance** $= \Sigma_1$ How to generate **2D** points from this GMM: **1** Flip biased k sided asin (the sides have probabilities $= -\pi_1$)
 - 1. Flip biased k-sided coin (the sides have probabilities π_1, \ldots, π_k)
 - 2. Let Z be the side that we got (it is some value 1, ..., k)
 - 3. Sample 1 point from Gaussian mean μ_Z , **covariance** Σ_Z

2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

Less uncertainty

More uncertainty

In 2D, you can more generally have ellipse-shaped Gaussians

Ellipse enables encoding relationship between variables

Can't have arbitrary shapes

Top-down view of an example 2D Gaussian distribution

Image source: https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels2013/ homework/assign5/a52dgauss.jpg

GMM with k Clusters

Cluster 1

<u>Cluster k</u>

- Probability of generating a
point from cluster $1 = \pi_1$ Probability of generating a
point from cluster $k = \pi_k$ Gaussian mean $= \mu_1$ in \mathbb{R}^d Gaussian mean $= \mu_k$ in \mathbb{R}^d Gaussian covariance $= \Sigma_1$ Gaussian covariance $= \Sigma_k$
 $d \times d$ matrixd $\times d$ matrix
 $d \times d$ matrixd $\times d$ matrix
 $d \times d$ matrix1. Flip biased k-sided coin (the sides have probabilities $\pi_1, ..., \pi_k$)
 - 2. Let Z be the side that we got (it is some value 1, ..., k)
 - 3. Sample 1 point from Gaussian mean μ_Z , covariance Σ_Z

High-Level Idea of GMM

• Generative model that gives a *hypothesized* way in which data points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

"All models are wrong, but some are useful."

-George Edward Pelham Box

Photo: "George Edward Pelham Box, Professor Emeritus of Statistics, University of Wisconsin-Madison" by DavidMCEddy is licensed under CC BY-SA 3.0

High-Level Idea of GMM

Generative model that gives a *hypothesized* way in which data points are generated

In reality, data are unlikely generated the same way! In reality, data points might not even be independent!

- Learning ("fitting") the parameters of a GMM
 - Input: *d*-dimensional data points, your guess for *k*
 - Output: $\pi_1, ..., \pi_k, \mu_1, ..., \mu_k, \Sigma_1, ..., \Sigma_k$
- After learning a GMM:
 - For any *d*-dimensional data point, can figure out probability of it belonging to each of the clusters

How do you turn this into a cluster assignment?

Repeat until convergence:

Step 0: Pick k

We'll pick k = 2

Example: choose *k* of the points uniformly at random to be initial guesses for cluster centers (There are many ways to make the initial guesses)

Step 1: Pick guesses for

where cluster centers are

Step 2: Assign each point to belong to the closest cluster

k-means

Step 3: Update cluster means (to be the center of mass per cluster)

k-means

Step 0: Pick k

Step 1: Pick <u>guesses</u> for where cluster centers are

Repeat until convergence:

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

(Rough Intuition) Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Repeat until convergence:

Step 2: Assign each point a probability to belonging to each of the *k* clusters

Step 3: Update **cluster means and covariances** carefully accounting for probabilities of each point belonging to each of the clusters

This algorithm is called the Expectation-Maximization (EM) algorithm specifically for GMM's (and approximately does maximum likelihood) (Note: EM by itself is a general algorithm not just for GMM's)

Relating k-means to GMM's

k-means approximates the EM algorithm for GMM's:

- k-means does "hard" assignment of each point to a cluster, whereas EM does a "soft" (probabilistic) assignment
- *k*-means does not keep track of shape/correlation information between variables (so shape is circular)

Interpretation: We know when k-means should work! It should work when the data appear as if they're from a GMM with true clusters that "look like circles"

k-means should do well on this

But not on this

Automatically Choosing k

For k = 2, 3, ... up to some user-specified max value:

Fit model using *k*

Compute a score for the model But what score function should we use?

Use whichever *k* has the best score

There are fancier ways for choosing k (e.g., DP-GMMs) No single way of choosing k is the "best" way

Here's an example of a score function you don't want to use

But hey it's worth a shot

$$RSS = RSS_1 + RSS_2 = \sum_{x \in cluster 1} ||x - \mu_1||^2 + \sum_{x \in cluster 2} ||x - \mu_2||^2$$

In general if there are *k* clusters:
$$RSS = \sum_{g=1}^{k} RSS_g = \sum_{g=1}^{k} \sum_{x \in cluster g} ||x - \mu_g||^2$$

Davidual Cum of Causeroe

Remark: *k*-means *tries* to minimize RSS (it does so *approximately*, with no guarantee of optimality) Cluster 1 RSS only really makes sense for clusters that look like circles

Why is minimizing RSS a bad way to choose *k*?

What happens when k is equal to the number of data points?

A Good Way to Choose k

RSS measures within-cluster variation

$$W = \text{RSS} = \sum_{g=1}^{k} \text{RSS}_g = \sum_{g=1}^{k} \sum_{x \in \text{cluster } g} ||x - \mu_g||^2$$

Want to also measure between-cluster variation

$$B = \sum_{g=1}^{k} (\text{\# points in cluster } g) \|\mu_g - \mu\|^2$$

Called the **CH index**
[Calinski and Harabasz 1974]
A good score function to use for choosing k:
$$CH(k) = \frac{B \cdot (n-k)}{W \cdot (k-1)}$$
Pick k with highest CH(k)
$$R = \text{total \# points}$$
Pick k among 2, 3, ... up to
pre-specified max)

Automatically Choosing k

Demo